

Facile Preparation of Pyrylium and Pyridinium Bromides Under Neutral Conditions

Eugene A. Cioffi^{†*} and William F. Bailey[§]

†Department of Chemistry, University of Rhode Island, Kingston, RI 02881 §Department of Chemistry, University of Connecticut, Storrs, CT 06269-4060

Received 5 February 1998; accepted 11 February 1998

Abstract: Pyrylium and pyridinium bromides may be prepared in virtually quantitative yield by reaction of the corresponding base with an excess of *tert*-butyl bromide under reflux in chloroform solution.

© 1998 Elsevier Science Ltd. All rights reserved.

Pyrylium, 1 pyridinium, 2 and related aromatic salts are generally prepared by protonation of the appropriate base with a strong Brønsted acid. $^{1-3}$ In light of the well-studied dehydrobromination that results when *tert*-alkyl bromides are treated with amine bases, 4 it is somewhat surprising that this elimination reaction has apparently not been exploited as a route to pyridinium bromides. 2,3 Thus, as might be anticipated, 4 treatment of 2,6-dimethylpyridine with an excess of *tert*-butyl bromide in chloroform solution at reflux delivers the pure hydrobromide salt in virtually quantitative yield. It occurred to us that *tert*-butyl bromide might also serve as an in situ equivalent of anhydrous HBr for the protonation of even weakly basic substrates such as γ -pyrones, 4-pyridones, and their thia-analogs. Indeed, as illustrated by the results presented below, treatment of such weak bases with an excess of *tert*-butyl bromide in chloroform solution at reflux delivers the corresponding pyrylium or pyridinium salts in excellent yield (Table 1); isobutylene is generated as a by-product in these presumably bimolecular dehydrobromination reactions.

The conversion of heterocycles 1-5, prepared by standard methods, 6 to their hydrobromide salts is easily

accomplished in high yield (Table 1) by simply heating a chloroform solution of the base and an excess (typically 5 molar equivalents) of freshly distilled *tert*-butyl bromide at gentle reflux overnight. The pyrylium (1a-2a) and pyridinium salts (3a-5a) may be isolated by simple 1, X = Y = O 2, X = O, Y = S 3, X = NH, Y = O 4, X = NMe, Y = O 5, X = NMe, Y = S reduced pressure; recrystallization affords analytically pure material.

Table 1. Preparation of Pyrylium and Pyridinium Bromides^a

entry	base	salt	тр, ℃	yield, ^b %
1	1, X = Y = O	1a	194-195°	95
2	2, X = 0, Y = S	2a	143-144 (dec)	93
3	3, X = NH, Y = O	3a	> 260 (dec)	94
4	4, X = NMe, Y = O	4a	280-281 (dec)	95
5	5, X = NMe, Y = S	5a	228-229 (subl)	94

^a Bromide salts were prepared by heating a solution of the base (10 mmol) and *tert*-butyl bromide (50 mmol) in dry chloroform (15 mL) at gentle reflux overnight. ^b Isolated yield of analytically pure product. ^c Lit.(ref. 8) mp = 192-193 °C.

While the dehydrobromination of tertiary alkyl bromides upon treatment with relatively strong bases such as substituted pyridines finds ample literature precedent, 2,4 the reaction seems not to have been recognized as a convenient route to hydrobromide salts of either pyridines or more weakly basic heterocycles such as γ -pyrones and 4-pyridones (it might be noted that the pK_a of 1a is a mere 0.30). As demonstrated by the results presented above, the ability of *tert*-butyl bromide to function as a surrogate for anhydrous HBr allows for the preparation of a variety of heterocyclic hydrobromide salts in high yield under essentially neutral conditions.

References and Notes

- 1. (a) Balaban, A. T.; Schroth, W.; Fischer, G. Adv. Heterocycl. Chem. 1969, 10, 241. (b) Balaban, A. T.; Dinculescu, A.; Dorofeenko, G. N.; Fischer, G. W.; Koblik, A. V.; Mezheritskii, V. V.; Schroth, W. Adv. Heterocycl. Chem. 1982, suppl. 2, 1.
- 2. Klingsberg, E. Pyridine and its Derivatives, The Chemistry of Heterocyclic Compounds, Vol. 14, pt. 1-5; Wiley Interscience: New York, 1962-1974.
- 3. (a) Joule, J. A.; Mills, K.; Smith, G. F. Heterocyclic Chemistry, 3rd Edition; Chapman and Hall: New York, 1995; pp. 64-119 and 148-165. (b) Gilchrist, T. L. Heterocyclic Chemistry, 2nd Edition; Longman: Essex, 1992; pp. 122-152 and 171-174.
- 4. Brown, H. C.; Nakagawa, M. J. Am. Chem. Soc. 1956, 78, 2197, and references therein.
- 5. Marcuse, A.; Wolffenstein, R. Chem. Ber. 1899, 32, 2527.
- 6. Literature procedures were followed for the preparation of the parent heterocycles: (a) 1 and 2, King, L.C.; Ozog, F.J.; Moffat, J. J. Am. Chem. Soc. 1951, 73, 300. (b) 3, Iguchi, S.; Inoue, A. Chem. Pharm. Bull. 1963, 11, 390. (c) 4, Cook, D. Can. J. Chem. 1963, 41, 1435. (d) 5, Elkaschef, M.; Nosseir, M. J. Am. Chem. Soc. 1960, 82, 4344.
- 7. Satisfactory C/H/N/Br analyses have been determined for all previously unreported bromide salts (2a-5a) and their IR. ¹H NMR and ¹³C NMR spectra are fully in accord with the assigned structures.
- 8. Cook, D. Can. J. Chem. 1963, 41, 505.
- 9. Gold, V.; Mah, T. J. Chem. Soc. Perkin II 1981, 812.